Asymptotic Approximation of Marginal Likelihood Integrals
نویسنده
چکیده
We study the asymptotics of marginal likelihood integrals for discrete models using resolution of singularities from algebraic geometry, a method introduced recently by Sumio Watanabe. We briefly describe the statistical and mathematical foundations of this method, and explore how Newton diagrams and toric modifications help solve the problem. The approximations are then compared with exact computations of the integrals.
منابع مشابه
Automated Analytic Asymptotic Evaluation of the Marginal Likelihood for Latent Models
We present two algorithms for analytic asymptotic evaluation of the marginal likelihood of data given a Bayesian network with hidden nodes. As shown by previous work, this evaluation is particularly hard because for these models asymptotic approximation of the marginal likelihood deviates from the standard BIC score. Our algorithms compute regular dimensionality drop for latent models and compu...
متن کاملLaplace's Method Approximations for Probabilistic Inference in Belief Networks with Continuous Variables
Laplace's method, a family of asymptotic methods used to approximate integrals, is presented as a potential candidate for the tool box of techniques used for knowledge acquisition and probabilistic inference in belief networks with continuous variables. This technique approximates posterior moments and marginal posterior distributions with reasonable accuracy [errors are O(n ) for posterior mea...
متن کاملThe Maximum Approximate Composite Marginal Likelihood (MACML) Estimation of Multinomial Probit-Based Unordered Response Choice Models
The likelihood functions of multinomial probit (MNP)-based choice models entail the evaluation of analytically-intractable integrals. As a result, such models are usually estimated using maximum simulated likelihood (MSL) techniques. Unfortunately, for many practical situations, the computational cost to ensure good asymptotic MSL estimator properties can be prohibitive and practically infeasib...
متن کاملGENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY
The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...
متن کاملFactorized Asymptotic Bayesian Inference for Mixture Modeling
This paper proposes a novel Bayesian approximation inference method for mixture modeling. Our key idea is to factorize marginal log-likelihood using a variational distribution over latent variables. An asymptotic approximation, a factorized information criterion (FIC), is obtained by applying the Laplace method to each of the factorized components. In order to evaluate FIC, we propose factorize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008